

Topic

SETHU INSTITUTE OF TECHNOLOGY

(An Autonomous Institution | Accredited with 'A' Grade by NAAC)

PULLOOR, KARIAPATTI – 626 115.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Activity Supports Employability/Entrepreneurship/Skill Development

Course Code		: 15UEE502
Course Name		: Power System Analysis
Academic Year		: 2020 – 2021 (ODD) Class : III Year
Category	Employability	

Activity	Simulation using Matlab
	Gauss seidal method

+6	angrymatlab.m X sorrowfaceinMATLAB.m X gaussianelimnationwithback
1	
2	* Gauss-Seidel method
3	
4 -	n=input('Enter number of equations, n: ');
5 -	A = zeros(n, n+1);
6	xl = zeros(n);
7 -	tol = input('Enter the tolerance, tol: ');
8 -	<pre>m = input('Enter maximum number of iterations, m: ')</pre>
9	
o	A=[4 2 3 8; 3 -5 2 -14; -2 3 8 27];
1 -	x1=[0 0 0];
2	
з —	k = 1;
4 -	while k <= m
5 -	err = 0;
6 -	戶 for i = 1 : n
7 -	s = 0;
.8 -	F for j = 1 : n
9 -	s = s - A(i, j) * x l(j);
- 0	- end
1 -	s = (s+A(i,n+1))/A(i,i);
2 -	if abs(s) > err
3 -	err = abs(s);
4 -	end
5 -	xl(i) = xl(i) + s;
- 6	- end
7	
omn	hand Window
So	lution vector after 41 iterations is :
200	0.99919498
	2.99974076
	2.00028882
>>	GaussSeidelmethod
En	ter number of equations, n: 3
En	ter the tolerance, tol: 0.001
En	ter maximum number of iterations, m: 100
So	lution vector after 8 iterations is :
99	0.99984713
	3.00008152
	2.00000765

Simualtion of Gauss Siedal Method

OutcomePower system analyses are an essential part of electrical power system design.OutcomeCalculations and simulations are performed to verify that the electricalsystem, including the system components, are correctly specified to perform as
intended, withstand expected stress and be protected against failures. Awareness
about the simulation of electrical systems leads to increase employability.

Delewi

Course Instructor

HoD/EEE